
COORDINATOR

BUILDING ROBUST FRAMEWORKS WITH LESS
INHERITANCE

Copyright © 1998-2007 Michael Kenny. All rights reserved.
michael@rhizomorphic.org

ABSTRACT
Object oriented languages allow one to model solutions in a variety of ways, from packaging
state and algorithm together in pure objects to treating state and algorithm them as separate
objects and everything in-between. As Cockburn puts it, „object technology is fundamentally
a program-packaging technology that permits a continuum of function-only and function-
plus-data packages“ [Cockburn98]. What is “right“ in a particular case depends on the
prevailing context, constraints and user preference.

Inheritance is often used in solutions because object oriented languages directly support it.
However experience has shown that inheritance may have been oversold and that such
solutions suffer from a variety of ailments. Other solutions, based on composition are more
complex to assemble and maintain and must use home grown mechanisms for survival but
they are often more responsive to change. Intransigent monolithic inheritance structures are
broken down and re-glued in a less stringent way. Function and data are separated and
dynamically loosely re-coupled to provide extra flexibility and robustness (usability over
time).

The framework presented highlights some of the issues involved. Instead of inheritance,
recursive algorithmic decomposition and indirection are substituted to gain flexibility, to
influence runtime behaviour and to achieve robustness in the face of change. These
mechanisms which are resolved at runtime provide great freedoms and can be seen as a move
away from the strait-jacket that compiled, static inheritance based languages often impose.
But they are appropriate only in given situations, suffering their own kinds of problems: they
are not a universal panacea. Surprisingly enough these mechanisms have their heritage in
pre-Object solutions. Booch observes that these traditional techniques have their place in
„bringing order to chaos“1 [Booch94].

PATTERN TYPE
Object Structural Behavioural

DERIVATION
Composite, Flyweight, Strategy and Adapter [Gamma+95].

1 „bringing order to chaos“ was surely the role of religion in other times. And in those times
religious authority determined the meta rules for architecture.

OTHER READING
Reactor[Schmidt95] and ACT[Pyarali+97] for the EventHandler running example.
Composition arguments in [Szperski98] and in [Gamma+95,2].

CONTEXT
We are often faced with the need to provide a number of complex services which are similar
in some ways. We generally seek to master complexity and factor out similarities in one way
or another. Inheritance can be used, so can composition or any combination of the two.

EXAMPLE
1. Report designer
A report designer is used to design documents composed recursively of elements such as text
blocks, tables and so forth. This document structure is edited with a WYSIWYG design
interface. At runtime this structure is brought together with the actual information to be
printed (held in business objects). The design GUI and printer module both use recursive
descent to display or print out the document. Dynamic behaviour is desired. For example, one
might design a particular kind of table but its actual size (over one or more pages) is governed
by the amount of data to be presented. One might want to vary the document structure in
some other way at runtime.
It is sensible to compose document building logic in a way analogous to the desired
document, but this logic could also be modelled with inheritance. A cross section of sample
Inheritance/Composition scenarios is shown below:

Figure 1 shows the extreme case of document building logic modelled as a monolithic object.
All „d“ classes contain logic to explicitly build some elements of the complete document.

Where no object composition is used, we cannot use
polymorphism to invoke document element
Make()s because these exist only as separate classes
not as separate objects.

Explicit construction calls only, throughout the
heritage structure. Multiple inheritance alleviates
some of the heavy binding a single inheritance
solution would bring. Selected „d“ classes can be
„mixed in“ to a number of documents.

MakeDoc()
{
 MakeTb1()//Tb1::Make()
 MakeTb2()//Tb2::Make()
 MakeTx1()//Txl::Make()
}

d2 d4
d3

d1 d5
d6

d7

Figure 1: Inheritance alone

With an inheritance/composition mix (Figure 2) we
can use polymorphism to invoke document element
creation (all document elements inherit from a
standard glyph class - not shown). The explicit
serial sequence of hard coded document building
calls is not generic and makes it difficult to model
e.g. tables inside tables, and impossible to alter
document building logic at runtime. Each different
document must have its own class (subclass
explosion).
The Make routines of Document Elements (e.g.
tables) contain direct references to data in Domain
Objects. So while 2 tables may be logically
identical, their differing content or access to data

leads to them being modelled as separate classes each with their own explicit Make (subclass
explosion).

With most complete composition („inheritance on
its side“) (Figure 3) the Make routine becomes
generic (the same for all elements). It recursively
calls Make on its members. Knowledge of
document structure is thus distributed amongst the
document elements. Tables inside tables can be
modelled without a problem. What is more this
structure can be dynamically changed. Subclass
explosion is avoided by configuration. If you want a
different document just plug together different logic
building blocks.

To be pluggable, all document elements inherit from a standard class (not shown).We find we
no longer need to model tables, text blocks in their own heritage hierarchies. The standard
class with its polymorphic interface and composition suffices.

2. Extensible EventHandlers
In a message oriented middleware based on the Reactor pattern [Schmidt95] we are faced
with the task of building a large number of EventHandlers. We want to be able to construct
Event Handlers with the greatest of ease and efficiency. An Extensible EventHandler
providing a service such as Customer Entry can model this service as a composite of the sub-
services, ‘Check Permissions’, ‘Inflate incoming Object constellation’, ‘Check for existing
customer’, ‘Create new Customer’ and these sub-services in turn may be assembled from
finer grained elements. This algorithmic part, what is to be done, is brought together with the
data to be acted upon, held in/via an ACT[Pyarali+97] object, at run time. EventHandlers
have an added complexity: they must be able to reconvene services suspended by
asynchronous calls to sub-service providers. In this paper the Coordinator is such an
Extensible EventHandler.

PROBLEM
In changing systems, interface syntax and inheritance coupling is prone to breakage.

Object oriented languages provide an inheritance based approach to the solution of problems.

Make()
{
 Tb1->Make()
 Tb2->Make()
 Tx1->Make()
}

tb tx

tb1 tb2 tx1 tx2

d

Figure 2: Inheritance/Composition
mix

Make()
{
 ctr[x]->Make()
 }

tb
tx tb

tx
tb

tx

d

Figure 3: Composition alone

Gamma et al. [Gamma+95,2] and others have discussed the merits of inheritance and
composition and the consensus is summed up in the second principle of Object Oriented
design „favour composition over class inheritance“.
Although Object Orientation was supposed to be change friendly the Pandora’s box of
inheritance undermines this goal. Inheritance breaks encapsulation affecting reuse and,
because of coupling (fragile base classes), inheritance based results are unwieldy and not
change friendly, „unmanageable monsters“ [Gamma+95,2] result. Subclass explosion is
another unwanted effect.
And still because it is seemingly provided for free a great amount of time is spent fashioning
inheritance based solutions in such a way that they might survive change and offer up some
kind of reuse.

Is there an easier way of building non-degradable systems?

FORCES
[numbered for comparison with resolution]
1. Class inheritance frameworks provided by mainstream object oriented languages suffer

from problems associated with flexibility, longevity and subclass explosion. An alternative
is needed.

2. The alternative must be extensible and usable in a variety of contexts. It must in some
sense be a configurable meta-solution as inheritance is.

3. Dynamic extensibility - configuration must be changeable at runtime (otherwise
inheritance suffices). I.e. Hot swapping of services.

4. Interfaces must survive change. Since we seek to provide solutions in all manner of
contexts we cannot not realistically provide a fixed set of dummy behaviours to be filled
in. We need to be able to make any number of services available - a kind of poor-man’s
reflection.

5. Fragile interface compilation (lengthy recompiles on interface change) in C++ leads to a
hesitancy to alter interfaces unless absolutely necessary, hindering free flowing design
increments.

6. Inheritance encourages reuse, we should provide fine grain reuse mechanisms too.
7. Can we exceed inheritance mechanisms and provide low level (code) reuse too?
8. Ease of use. The solution should not be markedly more complex to apply than inheritance.
9. Performance. Any solution should not be overly resource hungry.

SOLUTION
In areas were change leads to breakage adopt mechanisms that permit a greater degree of
freedom.

Instead of using inheritance to realise a service adopt a composition based approach. Prevent
ad hoc composed solutions by providing active framework mechanisms to encourage and
control object composition in a uniform way. Place these active mechanisms inside a
Coordinator object.

The framework is composed of state and algorithm now preserved in separate objects (Figure
4). Once separated they may vary independently (particularly important in asynchronous
EventHandlers see Figure 12). Wholesale separation is not a requirement. Typically we
separate non-core service/routing logic from fully-fledged business objects.

Internally the Coordinator acts as glue between algorithm and state, externally it provides an

unchanging (unbreakable) interface so that the service(s) it provides may be ascertained and
invoked.

Service X
Attribute1
Attribute2
Attribute3
Attribute..n

Algorithm1()
Algorithm2()
Algorithm3()
Algorithm5()
Algorithm..n()

Superclass X
Attribute4

Algorithm4()

becomes >>

Algorithm1 Algorithm3 Algorithm..nAlgorithm2 Algorithm4

Context
Attribute1
Attribute2
Attribute3
Attribute..n
StateIndex

Figure 4: Separating context from algorithm

A Coordinator object is configured by plugging in algorithms which together combine to
provide the complete service(s). Algorithms are themselves configured in a similar manner.
Active framework policy itself is also an algorithm pluggin. Plugged in algorithms represent
framework Hotspots [Pree95].

Participant interfaces never change syntactically: message content and its interpretation allow
any behaviour to be modelled and changed - i.e. semantic change.

By modelling Algorithm as a composite the framework directly supports composition and
reuse in a standard way. Algorithmic objects, instantiated many times appear in many
algorithms hierarchies.
Further, low-level reuse is encouraged by modelling these algorithms as flyweights
[Gamma+95]. Algorithmic objects, instantiated only once can appear in many algorithm
hierarchies.

Use of interface indirection, generic algorithms and indirect access to state in a composed
environment lacking inheritance coupling ensures robustness. By refusing to be specific in
this way we can cope with change.

Use of builders and factories is made to make the job of the application developer as easy has
possible.

APPLICABILITY
Use this framework in situations where change is likely and separation seems appropriate.
The flexibility of the framework compared to inheritance based solutions makes it particularly
suitable to prototype building. Algorithm pluggins instead of subclassing and unchanging
interfaces allow an active system to be up and running in record time from the roughest of
designs leading to quick concept proofs.
One might modify prototypes built with the unchanging interfaces and use explicit interfaces
for increased type safety once these have been fully established and matured.

Exhaustive use of these escape mechanisms may mean that the use of other more appropriate

languages or environments which provide the desired features built-in is indicated. Dynamic
interfaces and dynamic inheritance are becoming available.

GEOMETRY
The composed objects, Reactor, Coordinator and Algorithms themselves, are each strong
recursive centres of design. The diagram (Figure 5) shows only part of a system. A Reactor is

configured by four Coordinators. Each
Coordinator is in turn configured by
Algorithms some of which themselves
are composites.

This snowflake of centres can be nested
in all dimensions. Algorithms can lead
to Reactors which in turn are composed
etc.

A = Composed Algorithm
a = leaf Algorithm
C = Coordinator
R = Reactor

STRUCTURE AND PARTICIPANTS

AlgorithmLeaf

Action()

Action()
 - for each child
call
child.Action().

1 0..*

Object

1

*

Context
Attribute1
Attribute2
Attribute3
Attribute..n
StateIndex

GetObject()
GetObjectReverse()

1 0..*

objectMap

*
AlgorithmCtr

Action()

*

*

Coordinator

HandleInput()

1

*

contextSet

*

Algorithm

Action()
RegisterAlgorithm()
DeleteAlgorithm()

*

*

stepVector

*

*stepVector

COMPOSITE STRATEGY

(optionally as)
FLYWEIGHT
SINGLETON

ADAPTER

Figure 6: Structure - Class diagram - framework policies shown in text boxes

[Aggregations are given STL like names to indicate how they might be implemented. Note

a
A
a

aa

aa

aa

a
A
a

a
a
A
a

a
a
A
a

aa

a
a

A
a

aa

a
A
a

a
a

a

a

R
a
C

aa
a
C
a

a
a
C
a

A

A
C aa

C
a

aa

Figure 5: '3d' snowflake fractal of design centres

that the inheritance shown is for polymorphism, not for reuse]

Figure 6 illustrates the following participants in the Coordinator pattern:

Coordinator Internally the Coordinator acts as glue between algorithm and state, externally

it provides unchanging (unbreakable) interface so that the services it provides
may be ascertained and invoked.

Framework
build time

An instance of Coordinator is created and subsequently configured to realise
the services it is to provide. Configuration takes place by registering
Algorithms with the Coordinator via a call to
RegisterAlgorithm(anAlgorithm:Algorithm*,
 anAlgorithmType : int) : void

 The AlgorithmType is optionally used to group strategies together in certain
ways. Coordinators are never subclassed, they are configured by algorithms.

ConcreteAlgorithm

PreProcessing

PostProcessing

ErrorProcessing
Error Handling

i.e. DB Commit/Rollback

Initialisation

Actual Algorithms, one between
each async break

StateChangeAlgorithm

Coordinator

*

Algorithm

*

Algorithm governing state
changes

ActiveFrameworkPolicy

 Figure 7: Coordinator - Typical EventHandler algorithm plugins

Framework
run time

An incoming service request is handled by the unchanging interface
HandleInput(aMessage:Message*).
The message passed is interpreted at runtime. If the service requested in the
message is not provided by this Coordinator the request is suitably terminated.
If the service is recognised the relevant algorithm is now invoked (this
dispatching responsibility can be hived off to a Reactor like object) by the
Coordinator.
The unchanging interface
Action(aCoord:Coordinator*, anACT:Context*=0):int
is called on one or other of the Algorithms held in stepVector.

Note that the exact actions of the Coordinator on message receipt are
customisable too. This active framework policy is itself also an algorithm
plugged in at runtime which governs how an incoming message is interpreted
and which algorithms are invoked in which order as a result, and which
algorithms to invoke in exceptional circumstances. This behaviour, critical to

the survival of the framework, is provided the framework developer.

Event
Handler
Active
Framework
policy
example

In the EventHandler, Coordinator behaviour is modelled not to implement one
or more services but instead to implement the various stages of a single multi-
step service. These steps are the logic between various asynchronous calls to
sub-services. Responses from such sub-services are routed to their originating
Coordinator and the original service is reconvened with the next logical step.
A Reactor interrogates the incoming message and ensures it is passed to the
correct Coordinator. The Coordinator then checks to see whether it recognises
the incoming ACT(also in the message). If the ACT is not recognised, an error
has occurred. If it is recognised, the stateIndex is incremented (actually a
configurable state change algorithm is called) and control is passed to the
stepVector[stateIndex] algorithm, together with this ACT which
governs access to state.

Typical EventHandler framework policy called from HandleInput(...) is
sketched below:

 1 if new message invoke pre-processing , create ACT/Context
Object, set stateIndex to 1

 2 if reply to outstanding
asynchronous request

invoke StateChangeAlgorithm - typically
increment stateIndex

 3 <no condition> invoke stepVector[stateIndex]
(switch to the relevant step of this service)

 4 if error arisen invoke ErrorProcessing
 5 if last ConcreteAlgorithm invoke PostProcessing
 Table 1: Coordinator - Typical EventHandler active framework policy

Algorithm Algorithm is a Strategy composite which means it may be assembled of many

like parts.
Framework
build time

Assembly takes place by registering the algorithms via
RegisterAlgorithm(anAlgorithm:Algorithm*):void
See also AlgorithmCtr below. All assembly is initially governed by the central
Builder and Factory. Algorithms are never subclassed, they are configured by
other algorithms.

Framework
run time

An incoming request to the unchanging interface
Action(aCoord:Coordinator*, anACT:Context*=0):int
is passed recursively down the algorithm tree. Exceptional situations are
handled by exceptions, errors are handled by having Action return non-zero
leading to automatic unwinding of the stack.
The second parameter, Context*, allows access to certain special state
information (such as stateIndex) held directly in the Context object and allows
indirect navigation to extrinsic state.

Algorithm
Ctr

AlgorithmCtr is the node object in the Algorithm hierarchy, the glue between
all Algorithm parts. This link information is decoupled from the Algorithm
leaves because it represents extrinsic state. Algorithms are kept „dumb“ to
permit reuse.

Immutable algorithms which have no extrinsic state may be placed in common
algorithm pools to be freely shared amongst many algorithm hierarchies. Such
reuse can not be modelled with inheritance.

A lg1

A lg2

A lg3

C tr1

C tr2

A lgorithm P ool - flyw eigh ts

check perm issions

C ustom er E n try

check fo r ex isting
custom er(call
legacy system)

create custom er

C tr3

A lg4

A lg5
other processing

other processing

C

C Coordinator Alg Algorithm AlgorithmCtrCtr Control path

Figure 8: Pools of code reusable algorithms - typical EventHandler
example

Figure 8 shows a Coordinator with three services, two of which are composed
(Ctr1 and Ctr3).
AlgorithmCtrs do not appear in algorithm pools, they are held with each
Coordinator. AlgorithmCtrs are never sub-classed, they are composed at
runtime to contain the relevant Algorithms.
Algorithms should be built cooperatively with input from all application
developers involved in implementing a particular group of services. A registry
of Algorithms would be desirable to avoid repeated coding and garner full
reuse benefits.
Algorithm flyweight pools may have system-wide or sub-system scope.

Framework
build time

Algorithms or AlgorithmCtrs are registered with the current AlgorithmCtr via
 RegisterAlgorithm(anAlgorithm:Algorithm*):void

Framework
run time

Action(aCoord:Coordinator*, anACT:Context*=0):int
simply recursively calls Action(..) on each container member.

Context Holds control information and allows the dynamic addition of and provides

generic access to data of any type using name/value pairs. E.g. an STL
multimap or a Java Hashtable holding a key and objects of type Object. All
objects to be stored must have this Object wrapper (Adapter Pattern) or a basic
Object class must be mixed in to their heritage. The Context never knows

what kind of objects it is actually dealing with, it merely stores and retrieves
them. GetData... methods are parameterised to return the desired object. This
kind of wrapped generic data access is reminiscent of variant records.

Generic access is an issue as soon as low level reuse is practised since all
extrinsic state must then be removed from algorithm. Anytime a flyweight
algorithm „X“ is reused anywhere in a algorithm hierarchy it will access its
extrinsic state in the same way. We can make no assumptions about the order
in which data is stored or the order in which sharable algorithms may be used.

In the EventHandler the address of the Context object can be the ACT.

 Context has three roles:
1. Indirect
parameter
passing

Parameters are usually passed between objects directly but all Action() calls
have the same signature. The passing of any kind of data is made possible by
„hiding“ the actual parameters behind the Context object which is passed
instead.

2.
Separation,
access to
state.

In certain cases (low level reuse) we separate all extrinsic state from logic.
Such state is accessible via the context object.

3,
Preservation.

In the EventHandler example, each Coordinator has many different context
objects. These, used alongside the algorithms, allow an EventHandler to
manage asynchronous breaks.

Builder and
Factory

(not shown but well known)
Classic use of builder and abstract factory classes are made to initially
configure the system. The use of several nested loops is made to automatically
build the framework from the outside in.
E.g. Reactor, made up of Coordinators, made up of Algorithms
At each level products are delivered by the factory until it has no more.
Alternatively incoming messages can be used to configure the system on the
fly, requests being used to order services from the factories. The services thus
built could be subject to a „least recently used“ unloading scheme.

COLLABORATIONS
The Collaboration and Implementation sections include references to a Reactor which is
always present in the EventHandler example but not necessarily present in all solutions. A
Reactor is an initial dispatcher which routes messages for a particular sub-system from a
request queue to the relevant Coordinator.

R

C C

SubsystemCustomerDB

Customer Deletion

Customer EntryC

Customer
Modification

Figure 9: Reactor dispatch to relevant Coordinator (see also Figure 8)

As seen in the Structure and Participants section there are two phases; „build time“ when the
framework is assembled and „runtime“ when control is passed to the assembled framework
(see also [Marquadt98]).

Framework build time:

Build-
er

Co-ord
inator

State
Change Alg

Factory Alg1 Msg
Handler Reactor

AlgCtr Alg2

1: new

3: Instance

5: RegisterStateChangeAlgorithm (Algorithm *)

6: MakeAlgorithm (int, int, ServiceHandler *, int &)

12: MakeMessageHandler (int)

8: Instance

13: Instance

14: RegisterMessageHandler (MessageHandler *)

15: RegisterAlgorithm (Algorithm * , int)

16: RegisterCoordinator()

4: MakeStateChangeAlgorithm ()

2: set_Service(CustomerEntry)

7: new

9: RegisterAlgorithm ()
10: Instance

11: RegisterAlgorithm ()

Figure 10 Builder - Framework/Coordinator assembly, EventHandler example with
Reactor

Figure 10 shows creation of Coordinator for a Reactor. Steps 6 to 15 make up the inner
Algorithm creation loop which is repeated until the factory delivers no further products for

the current Coordinator. Coordinators are created in the outer loop, steps 1-5 and 16.
Because everything bar the algorithms themselves are configured and not subclassed building
is carried out by code that never changes.

Peculiar to the EventHandler example:
• each Algorithm may have an attached MessageHandler which inflates incoming messages

into objects using the relevant schema. This handler could just as well be an algorithm too
(steps 12-14).

• Each Coordinator has its own ChangeStateAlgorithm (generally the default) which governs
how the EventHandler switches to which state following the receipt of a response to an
outstanding sub-service request

• Each Coordinator is registered with the Reactor (Reactors are built in a loop around the
Coordinator assembly shown above) at the end of the outer loop (step 16).

Framework runtime:

Alg1 Alg2 Context1 Business
Facade

Msg
Handler1

Alg
Ctr

Queue Reactor Cust. Co-
ordinator

1: Receive (Message *)

2: HandleInput (Message *) 3: Create

6: Action (Coordinator *, MessageContext *)

4: InfllateObjectGraph (const ObjectGraph * , Message &)
5: RegisterObjectGraph (ObjectGraph * , int)

7: Action (Coordinator *, MessageContext *)

9: navigate to state
object, or initiate
action in object

12: Send (Message *)

10: access to business
objects via facade

11:

8: Action (Coordinator *, MessageContext *)

Figure 11 Framework runtime, EventHandler (Coordinator) with Reactor, Queue ..

Figure 11 shows typical Coordinator behaviour in the context of Reactor/EventHandler, but
Coordinator behaviour always proceeds along these lines.
In step 2 a service request is made of the Coordinator.
Steps 6 to 12 show this service being carried out with a recursive Action(...) call to the
algorithm structure concerned. Steps 9 and 10 shows how from Algorithm 2 we access state
(context) and invoke further actions in or extract data from business objects.
Peculiar to the EventHandler example:
• in step 3 the incoming message is found to have no ACT so one(here called

MessageContext) is created to govern future processing.
• the attached MessageHandler inflates the incoming message and places the result in the

object container of the context object.

• In step 12 a request to a sub-service or a response to a client is sent. The message to be
placed in the queue is assembled by the algorithmic code.

Context1CustomerDB :

Reactor
Queue Cust. Modification

: EventHandler

4: Switch to INITIAL Algorithm

12: Switch to NEXT Algorithm - recognised ACT

1: Receive (Message *)
2: HandleInput (Message *)

3: Create

6: Receive (Message *)

7: HandleInput (Message *)

9: Receive (Message *)

10: HandleInput (Message *)

Context2

8: Create

11: Use

This is the response to the request made to the
legacy system in step 4. The ACT of this
response is recognised and the correct Message
Context Object is automatically referred to.

5: Send (Message *)

Switch to INITIAL Algorithm

Alg2Alg1

This service requires the service of another
machine (e.g. a legacy system) Here a
request is sent to that machine

The Reactor is free to select the next incoming
message from the queue. This message is
"new" it is not the response from legacy system.
So a new message context is created

Figure 12: Services do not block, Algorithms in the Event Handler are reused directly

- - - - - - - -

Figure 12 shows how in EventHandlers it is necessary for Algorithm and Context to vary
independently. Context is stored between message breaks and Algorithm proceeds to work
with a different Context (Step 5). In steps 9-10 the previous context is brought together with a
new Algorithm.

ROLES
• Framework developer - Leverages this framework into the design, configures the

interfaces and determines one or more algorithm pluggins to provide framework policy.
This policy should be as active as possible to relieve the application developer from
repeated error prone programming and to provide stability. Ideally the framework has
default behaviour. Provides builders and factories to produce specific products for
framework assembly which the application developer modifies to configure a specific
application.

• Application developer (framework user) - Uses the framework to realise the end
application. Configure the framework with algorithms of his/her own. Does not program
the framework policy algorithm pluggin.

 =Asynchronous message break

RESOLUTION OF FORCES
1. Alternative to class inheritance - Object composition is known to relieve certain

inheritance problems. A Coordinator supports composition, provides external interface,
mediates between state and algorithm and encapsulates framework policy. Configuration
avoids subclass explosion.

2. Extensible meta-solution - Instead of subclassing, algorithms (including the framework
policy itself) are plugged in to the Coordinator object at run time.

3. Runtime configuration - Plug in configuration is completely dynamic. E.g. by plugging a
new algorithm into the framework at runtime we can perform a new database permissions
check.

4. Configurable meta interface - The Coordinator uses syntactically unchanging message
interfaces backed up by plug in interpreters. The desired service is ascertained from
information in the message. The Coordinator either carries out this service or returns the
request to be handled by another Coordinator.

5. Fragile interface compilation - This problem is circumvented because interfaces never
change.

6. Fine grain reuse mechanisms - Algorithms themselves are composed of sub-Algorithms.
This mechanism can be used to provide design reuse.

7. Low level (code) reuse - Removal of extrinsic state from Algorithms render their code
directly reusable. Such algorithms must be able to access such state (accessible via the
Context object) in a generic way.

8. The solution must be easy to use - Builders and factories are provided to automatically
assemble all the different Coordinator objects at runtime. The application developer need
only configure the builder and factory correctly, assembly from these parts is then
automatic. The framework itself serves to reign in the increase in complexity caused by the
proliferation of objects resulting from the composition approach.

9. Performance - The indirection mechanisms and navigation to objects in the composed
solution (especially generic navigation to data) is costly in time terms. This can be
mitigated by reducing the number of objects using the low level reuse mentioned in 7
above. Used optimally, this solution can completely avoid the unwanted baggage of
repeated logic in unneeded subclasses (classes identical but for the data they access) and
overweight objects resulting from ageing/sub-optimal inheritance. In other words overall
code-footprint is markedly reduced positively affecting time performance.

CONSEQUENCES
The Coordinator is sadly not a cure all. It suffers from its own various ailments some of which
(e.g. Stove pipe architectures) object orientation specifically solves.

+
• By adopting separation, low-level object algorithm reuse becomes possible.

Swapping/thrashing inefficiencies due to the repeating of algorithmic code in many
hundreds of algorithmically identical objects is avoided.

• Easy to get solutions up and running from minimal design. Complex design decisions
resulting from inheritance complexity can be postponed or even completely by-passed.

• Does not suffer interface fatigue.
• Robust.
• Fewer subclasses because of configuration.

• Since we can mix together what we need at a particular time we are unlikely to be
confronted with legacy inheritance structures offering hundreds of methods, only ten of
which are still relevant.

• Extensibility: Any of the algorithms plugged into each Coordinator at framework build
time can be varied at runtime. By mixing algorithms into new algorithm composites a
certain extensibility without the need for recompilation is attained. With C++ one can
place the relevant factories into DLLs to be dynamically swapped in and out of the running
system. Other languages offer built-in support for varying degrees of extensibility.

-
• Reversion to stove-pipe architectures, global data traffic: Wherever separation is used,

algorithm has the added overhead of needing to navigate dynamically to its context and
this is obviously less efficient than if context were classically available. System
complexity bemoaned elsewhere in inheritance based designs now re-emerges in this
navigation.

• Indirection leads to slowness partly offset by the reduced code footprint and associated
potential need to swap.

• More objects, partly offset by use of singleton algorithms.
• Reduced type safety. The generic interfaces enforce no type checking. The application

developer can introduce some form of Run Time Type Information checking, but for some
domains this will be „too late“.

• Use of complex message content and simple unchanging interfaces makes it difficult to
ascertain run time behaviour at a glance. A typical run time stack containing a number of
nested Actions() is less informative than a stack with more traditional specific interfaces.
So debugging is difficult. Debugging inheritance based solutions can be nightmarish too
of course.

IMPLEMENTATION
The Framework developer rolls out a factory class (to be configured by the Application
developer) and algorithms governing framework policy and StateChangeAlgorithm(s).

The Application developer must configure this framework. The delivery of the following
products from the factory must be ensured:
• All the Algorithms that make up a service. These Algorithms generally hold logic to

de/code (interpret) Messages and the Service logic itself.
• The ServiceEnums.h file.
The framework can be used immediately with just these products.

The following can be optionally supplied:
• One or more customised dispatch Algorithm(s) for the Reactor.
• One or more customised switch Algorithm(s) for the Coordinator.
• One or more customised timeout Algorithm(s) for the Coordinator.
• One or more customised StateChangeAlgorithm(s) overrides for the Coordinator.
• Other algorithms...

Development of Coordinator and Algorithms can generally proceed unilaterally. However
there are some central locations where development must be coordinated.

Other issues to bear in mind when during design and implentation are; problems of killing the
algorithm singletons, handling of system crashes, suspend/resume.

SOURCE CODE
Framework configuration:

Each Coordinator has a ServiceId used in dispatch to and checking of services at runtime.
Messages will contain this Id when making a request of a service. The file ServiceEnums.h
holds all service Ids:

// Note: 0 used for error condition in framework building
enum theCustomerServices { CustomerEntry = 1, CustomerDeletion,

service3, etc. };

This file details all services provided by the/all Reactor(s). Many factories may conspire to
build the complete framework so these service keys must be unique. The SubsystemBuilder
should check key uniqueness.

Application developers configure the Factory class (delivered by the Framework developer)
that is used to obtain developer products when building the Framework. Configuration
proceeds by adding lines of code to the Factory class code in a set way. These lines serve to
register Application developer products with the framework. Development of this class must
be coordinated with the developers of other services and their Algorithms. Only the
MakeAlgorithm method is affected:

Algorithm *
FactorySample1::MakeAlgorithm
(

 int numberCoordinator,
 int numberAlgorithm,
 Coordinator * aCoordinator

) //const
{

 switch (numberCOORDINATOR)
 {
 case 0:
 aCoordinator->set_theService(CustomerEntry);

 // set GENERAL pre/post and error strategies, may be
 // overidden
 aCoordinator->RegisterAlgorithm(
 PreAlgorithm::Instance(), PreEnum);
 aCoordinator->RegisterAlgorithm(
 PostAlgorithm::Instance(), PostEnum);
 aCoordinator->RegisterAlgorithm(
 TransactionErrorAlgorithm::Instance(), ErrorEnum);

 if (numberAlgorithm == 0)
 {
A... result = SampleAlgorithm1::Instance(); //customise
 }
 else if (numberAlgorithm == 1)
 {
D... // Be careful to avoid recursive loops.
 // Here composite 2 container objects are created.
 // If the same containers are used many times the

 // application developer may opt to
 // build his/her own custom container classes
 // instead of building them dynamically here...

 result = new AlgorithmCtr;
 Algorithm * theAlgorithmCtr2 = new AlgorithmCtr;

 // the container objects are filled with leaf
 // products or other containers
 // the order of registration is the order in which
 // sub-transactions will be called.
 result->RegisterAlgorithm(
 SampleAlgorithm1::Instance());
 result->RegisterAlgorithm(theAlgorithmCtr2);
 result->RegisterAlgorithm(
 EndAlgorithm1::Instance());

 theAlgorithmCtr2->RegisterAlgorithm(
 SampleAlgorithm2::Instance());
 theAlgorithmCtr2->RegisterAlgorithm(
 SampleAlgorithm3::Instance());
 }
 else if (numberAlgorithm == 2)
 {
 result = SampleAlgorithm3::Instance();
 }
 else if (numberAlgorithm == 3)
 {
 result = EndAlgorithm1::Instance();
 }
 break;
 case 1:
 aCoordinator->set_theService(CustomerDeletion);

 if (numberAlgorithm == 0)
 {
B... // if SampleAlgorithm1 has already been created it
 // is reused - singleton.
 result = SampleAlgorithm1::Instance();
 }
 else if (numberAlgorithm == 1)
 {
 result = new AlgorithmCtr;
 Algorithm * theAlgorithmCtr2 = new AlgorithmCtr;

 result->RegisterAlgorithm(
 SampleAlgorithm1::Instance());
 result->RegisterAlgorithm(theAlgorithmCtr2);
 result->RegisterAlgorithm(
 EndAlgorithm1::Instance());

 theAlgorithmCtr2->RegisterAlgorithm(
 SampleAlgorithm2::Instance());
 theAlgorithmCtr2->RegisterAlgorithm(
 SampleAlgorithm3::Instance());
 }
 else if (numberAlgorithm == 2)
 {
 result = SampleAlgorithm3::Instance();
 }
 else if (numberAlgorithm == 3)
 {
 result = EndAlgorithm1::Instance();
 }
 break;

case 2:

 aCoordinator->set_theService(Service3);

 if (numberAlgorithm == 0)
 {
C... result = SampleAlgorithm1::Instance();
 }
 break;
 default:
 cout << "ERROR ? Make Algorithm - Default " ;
 result = 0;
 break;
 }

return result;
}

In all „Make“code grey areas are those to be customised by the application developer to
deliver the desired product. No other lines should be altered.
The Factory above produces three services; CustomerEntry and CustomerDeletion and
Service3.
C.. shows an example of a Service with a single Algorithm.

Some algorithms are flyweight singletons. For example: SampleAlgorithm1 is referenced
and used by both CustomerEntry and CustomerDeletion (highlighted as A.. and B.. above).
D... shows the assembly of a composite Algorithm from sub-components.

Framework build:
The products of the Factory are automatically hooked into the Framework at runtime by the
SubsystemBuilder class. Each Subsystem is built by iterating generically through the supplied
factory. Figure 10, shows how the framework is assembled by calls to the factory. As with
most factories, product ownership is given to the framework. The developer should not delete
these products.

Framework run:
main()
{

// This call leads directly to creation of the Reactor. The
// Reactor is never subclassed.

 // Call also leads to assignment of initial Algorithm to the
 // reactor
 Reactor::Instance()->set_theDispatchAlgorithm(
 DispatchAlgorithmServer::Instance());

 // This call also leads to creation of all Coordinators
 // and their registration with the Reactor and to creation of
 // all Algorithms and registration with the Coordinator
 SubsystemBuilder::Instance(FactorySample1::Instance());
 // many factories may be used to build the framework
 // In this way sensible factory groupings may emerge
 SubsystemBuilder::Instance(FactorySample2::Instance());

 //pass control to the reactor
 Reactor::Instance()->Dispatch();
}

This main() shows how the Reactor is assigned its DispatchAlgorithm and the call of
SubsystemBuilder with a Factory to build the Reactor/Coordinator/Algorithm constellations
for this Subsystem. These two calls serve to completely assemble the Framework. The

subsequent Reactor Dispatch() call passes control to the freshly built framework. Because the
Reactor, Coordinators and Algorithms are configured in turn by each other assembly is
simply generic.

ACKNOWLEDGEMENTS
Thanks to Christa Schwanninger for her guidance and to the Europlop 98 workshop members
for their insights, helpful comments and encouragement.

KNOWN USES
These mechanisms have been applied in a Reactor based Communcation Framework for a
mission critical reservations system serving 30,000+ clients - used as sketched in the
Extensible EventHandlers running example. Also used in a Report Designer/Renderer - used
as sketched in the running example.
Workflow management products glue third party black boxes together across WANs. Data is
passed from application to application in tokenised form, interpreters serve to convert the
input/output data to the expected format for each application. These frameworks are powerful
because they are non-specific.

RELATED PATTERNS
Overall the Coordinator patterns can be viewed as a generalisation of the Pipes and Filters
pattern [Buschmann+] and [Meunier95].
The „Do-it-yourself reflection“ [Sommerlad98+] patterns to build flexible systems deal with
issues similar to those presented here.
Algorithm is an example of the Strategy, Flyweight, Composite and Singleton patterns.
Issues involved in context separation are discussed in State Object [Dyson+97].
The use of three classes (a gateway (Coordinator), data and algorithm logic) is typical of
algorithm solutions and can be observed for example in „Algorithm design by patterns“
[Galve-Francés+98].

REFERENCES
[Booch94] Booch, „Bringing order to chaos“. Object-Oriented Analysis and Design,

pp 16-21.
[Buschmann+] Buschmann, Meunier, Rohnert, Sommerlad, Stal „Patterns of Software

Architecture“
[Cockburn98] Cockburn, „What is not suited“, Surviving Object Oriented Projects,

Addison-Wesley 1998 pp 36
[Dyson+97] Dyson, Anderson „State Patterns“. In Martin, Riehle, Buschmann (eds)

Pattern Languages of Program Design 3, Addison Wesley 1997 pp -
125,142

[Gamma+95,2] Inheritance v. Composition. In Gamma, Helm, Johnson, Vlissides, Design
Patterns:Elements of Reusable Object Oriented Software, Addison
Wesley 1995 pp -17,19

[Galve-
Francés+98]

Galve-Francés, García-Martín, Burgos-Ortíz, Sutil-Martín. „An approach
to algorithm design by patterns“. Presented at the Europlop Conference,
Kloster Irrsee 1998.

[Gamma+95] Gamma, Helm, Johnson, Vlissides, Design Patterns:Elements of Reusable
Object Oriented Software, Addison Wesley 1994

[Marquadt98] Klaus Marquadt, The Advent Pattern in „Physical Patterns“. Presented at
the Europlop Conference, Kloster Irrsee 1998.

[Meunier95] Regine Meunier, „Pipes and Filters Pattern“, In Coplien, Schmidt (eds)
Pattern Languages of Program Design 1, Addison Wesley 1995 pp -
427,440

[Pree95] Pree, Design Patterns for Object Oriented Software Development,
Addison Wesley 1994, Chapter 4, Metapatterns.

[Pyarali+97] Pyarali, Harrison, Schmidt, „Asynchronous Completion Token“. In
Martin, Riehle, Buschmann (eds) Pattern Languages of Program Design
3, Addison Wesley 1997 pp -245,260

[Schmidt95] Schmidt, „Reactor“. In Coplien, Schmidt (eds) Pattern Languages of
Program Design 1
Addison Wesley 1995 pp -529,546

[Sommerlad98+] Sommerlad, Ruedi. „Do-it-yourself reflection“. Presented at the Europlop
Conference, Kloster Irrsee 1998.

[Szperski98] Szperski „Connection oriented programming“. In Szperski Component
Software..Addison-Wesley/ACM 1998 pp-148

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

		2009-06-16T13:07:42+0200
	Michael Kenny

